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Data Is The New Bacon!
-My vegetarian friends t-shirt
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“Data is a precious thing and 
will last longer than the 
systems themselves.” 

– Tim Berners-Lee
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Some Background

● Randomly accessible, fixed size blocks, eg. rotating magnetic media, 
solid state disk, etc.  

● Typical size is 512, 4096 bytes
● What you can use to create a file system upon, however it’s not 

required for every file system
● Blocks are referenced by a logical block address, 0 … N-1
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Block Storage Device



Some Background

● OS/initiator issues command (read/write)
● Disk/target processes command returns status with/without data
● If status is error, OS/initiator requests additional information from the 

disk/target (request sense) 
● Operating system decodes sense data and does reporting and 

potentially recovery
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Block error for Small Computer System Interface (SCSI)



● Temporary or persistent read/write error
● Read error corrected by write
● Temporary or persistent timeouts

○ Why can this be worse than a hard error?
● Unexpected resets (device spontaneously restarts)
● Detect incorrect data, report error and/or correct
● High latency/poor performance, possibly in the presence of errors

Storage Device Errors
Errors that operating systems need to handle
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Importance Of Testing The Storage Stack

● Operating systems require the ability to gracefully handle storage 
hardware errors
○ No one wants their system to crash if a storage error occurs

● Need to exercise error code paths to ensure
○ Data integrity
○ Adequate logging
○ No kernel panics (non-intentional anyway)
○ No memory leaks
○ Correct recovery behavior (retry, reset, RAID correction)
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Layering Of Linux Storage Stack

● Where you generate the error determines which layers of the stack 
get tested

● What does the internal architecture of Linux storage stack look like?
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Linux Storage 
Stack

It’s complicated
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Difficulties In Testing

● Advertised rate by an enterprise Serial Attached SCSI disk drive (SAS)
○ Un-recovered Less than 1 sector in 10^16 bits transferred

■ (10**16 bits) / 8 to bytes / (2 ** 40) to TiB = 1136 TiB
○ Miscorrected Less than 1 sector in 10^21 bits transferred

● Actual error rates can be worse, search CERN Data integrity, 10^7
● How can you effectively test error paths for events that rarely happen?
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Storage devices are quite reliable



Characteristics Of Desirable Error Testing

● Availability
● Ease of use
● Repeatability
● Low monetary cost
● Simple application programming interface (API) for automation
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Different Approaches In Creating Errors

● “Fake” errors
○ In kernel device(s)
○ External network storage device

● “Actual” errors (emanate from hardware)
○ Use actual hardware
○ Virtual machine (simulated hardware)
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In Kernel Device And Network

● Write an in kernel device or layering device which creates the needed 
errors
○ SCSI debug
○ dm-flakey, dm-delay, dm-dust
○ SCSI Fault injector

● Use network device which return errors
○ Network block device (NBD)
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Not a complete list



SCSI Debug

● Simulates 1 or more SCSI devices
● RAM backed, not persistent, limited to available system memory
● Has runtime options in sysfs for configuration

○ Medium_error_start, medium_error_count, timeouts, delays, 
recovered media error, aborted commands, device queue full ...
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Device Mapper Error Targets

● Device mapper (dm) targets can be layered over other dm devices 
or actual storage devices

● Dm-flaky - Starting from the time the table is loaded, the device is 
available for N seconds, then exhibits unreliable behaviour for N 
seconds, and then the cycle repeats

● Dm-delay - A target that delays reads and/or writes and can send 
them to different devices

● Dm-dust - Generate read errors and read errors that can be 
corrected with a write

15



Network Block Device (NBD)

● Can create block devices from files or in memory
○ Sparse support, so you can create sizes that exceed actual 

hardware limits, eg. 8EiB
● Errors can be created for a block device by creating a file in /tmp

○ For /dev/nbd0 -> touch /tmp/error0 (error file is configurable)
● Can create read delays, write delays
● Can set error rates as a percentage or probability
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SCSI Fault Injector

● Combination of SystemTap for kernel instrumentation and the 
external program SCSI fault injector which maintains state and 
dictates actions

● Created in the kernel 2.6 time frame, circa 2008
● Seems like maintenance and updates have stalled
● It found a number of different bugs during development
● https://www.kernel.org/doc/ols/2008/ols2008v2-pages-205-214.pdf
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Use An Actual SCSI Disk Drive

● Read long -> corrupt bytes in buffer -> write long -> regular read = read error
● Mode page settings to discover size of correction span
● Fix by rewriting with regular write
● Can prematurely age drive due to increased error counts
● Can cause auto re-allocates which may fill the grown defect list and possibly 

cause drive to fail
● May cause SMART errors which may be a good thing for testing
● What disk drive devs do, they have own functionality to clear drive
● Errors limited to read errors (recoverable and unrecoverable)
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Warning: Don’t do this on a drive you value



Create The Errors In A Virtual Machine (VM)

● If we are already simulating the hardware, why not simulate possible 
error responses too?

● Seems like a great way to ensure correct behavior of guest 
operating systems
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● Can present errors before the OS or even the boot loader gets loaded
○ Ensure your RAID solution actually allows you to boot in a degraded 

mode
● Operating system agnostic, you can test any OS that will run in VM

○ Compare/contrast file system implementations, volume managers, 
software RAID

● Exercise more layers of the storage stack
○ Note: Limited to hardware emulation, thus not all storage device 

drivers can be tested
● No resources consumed from guest OS, does consume host resources

Benefits Of Adding Error Injection In VM
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Benefits Of Adding Error Injection In VM

● No artificial test code in kernel, test like you would in production
● Anyone that can run the VM environment can use, no special hardware
● Create errors for all the supported device types and attachment options

○ SCSI (Parallel, SAS, FC)
○ ATA (PATA, SATA)
○ NVMe
○ Others ...
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● Because we are mimicking hardware we need to make sure that it 
adheres to the interface protocol
○ Want to avoid programing to incorrect behavior
○ This happens with real hardware, vendors incorrectly implementing 

a protocol, kernel has device specific code to handle this
● VMs accurately reflect the hardware implementation they are trying to 

model, even the issues, they have to model hardware bugs too

Risks Of VM Error Injection
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What could possibly go wrong



● Statistics gathering (blktrace for all)
○ Transfer size
○ Location / hot spots
○ Access patterns

● Capture / Playback
○ Capture sequence, play it back

● Repeatability for error reproduction or analysis

Other Potential Use Cases
Some of These Already Exist
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● Create shingled magnetic recording (SMR) device
○ Allow developers to create new device mapper or filesystems 

to improve usability and performance
● Expand device models to support more features

Future Ideas
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● https://github.com/tasleson/qemu/tree/block_error_inject
● Adds a QAPI for adding/removing media errors for 1 or more block 

devices
● Modifications to SCSI, AHCI, NVMe block devices

○ Ability to identify which logical block is in error for request
○ Returns accurate error data, SCSI sense data with sector in error

Proof Of Concept For QEMU

25

https://github.com/tasleson/qemu/tree/block_error_inject


● QEMU already has the ability to inject some errors
○ blkdebug

■ Utilizes a configuration file
■ Can have logic based on different sequence of events

○ I wasn’t aware of this when I added my functionality
● Plan is to merge the functionality I added with the existing blkdebug 

and extend the features

Proof Of Concept For QEMU
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An Example Use

● I proposed a logging change to Linux kernel to add a unique 
durable ID to storage related messages

● It required forcing the kernel down storage error paths to test 
logging changes for correctness

● Having this functionality in QEMU made this process much easier, 
especially considering kernel changes made in different storage 
subsystems
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What Else Can We Test With A VM?
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Questions?
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Thank You!

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews
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