
VM Block Error Injection, A Novel*
Approach For Testing Linux Storage
Tony Asleson <tasleson@redhat.com>
January 16, 2020

* Well… not that novel

mailto:tasleson@redhat.com

Data Is The New Bacon!
-My vegetarian friends t-shirt

2

“Data is a precious thing and
will last longer than the
systems themselves.”

– Tim Berners-Lee

3

Some Background

● Randomly accessible, fixed size blocks, eg. rotating magnetic media,
solid state disk, etc.

● Typical size is 512, 4096 bytes
● What you can use to create a file system upon, however it’s not

required for every file system
● Blocks are referenced by a logical block address, 0 … N-1

4

Block Storage Device

Some Background

● OS/initiator issues command (read/write)
● Disk/target processes command returns status with/without data
● If status is error, OS/initiator requests additional information from the

disk/target (request sense)
● Operating system decodes sense data and does reporting and

potentially recovery

5

Block error for Small Computer System Interface (SCSI)

● Temporary or persistent read/write error
● Read error corrected by write
● Temporary or persistent timeouts

○ Why can this be worse than a hard error?
● Unexpected resets (device spontaneously restarts)
● Detect incorrect data, report error and/or correct
● High latency/poor performance, possibly in the presence of errors

Storage Device Errors
Errors that operating systems need to handle

6

Importance Of Testing The Storage Stack

● Operating systems require the ability to gracefully handle storage
hardware errors
○ No one wants their system to crash if a storage error occurs

● Need to exercise error code paths to ensure
○ Data integrity
○ Adequate logging
○ No kernel panics (non-intentional anyway)
○ No memory leaks
○ Correct recovery behavior (retry, reset, RAID correction)

7

Layering Of Linux Storage Stack

● Where you generate the error determines which layers of the stack
get tested

● What does the internal architecture of Linux storage stack look like?

8

Linux Storage
Stack

It’s complicated

9

Difficulties In Testing

● Advertised rate by an enterprise Serial Attached SCSI disk drive (SAS)
○ Un-recovered Less than 1 sector in 10^16 bits transferred

■ (10**16 bits) / 8 to bytes / (2 ** 40) to TiB = 1136 TiB
○ Miscorrected Less than 1 sector in 10^21 bits transferred

● Actual error rates can be worse, search CERN Data integrity, 10^7
● How can you effectively test error paths for events that rarely happen?

10

Storage devices are quite reliable

Characteristics Of Desirable Error Testing

● Availability
● Ease of use
● Repeatability
● Low monetary cost
● Simple application programming interface (API) for automation

11

Different Approaches In Creating Errors

● “Fake” errors
○ In kernel device(s)
○ External network storage device

● “Actual” errors (emanate from hardware)
○ Use actual hardware
○ Virtual machine (simulated hardware)

12

In Kernel Device And Network

● Write an in kernel device or layering device which creates the needed
errors
○ SCSI debug
○ dm-flakey, dm-delay, dm-dust
○ SCSI Fault injector

● Use network device which return errors
○ Network block device (NBD)

13

Not a complete list

SCSI Debug

● Simulates 1 or more SCSI devices
● RAM backed, not persistent, limited to available system memory
● Has runtime options in sysfs for configuration

○ Medium_error_start, medium_error_count, timeouts, delays,
recovered media error, aborted commands, device queue full ...

14

Device Mapper Error Targets

● Device mapper (dm) targets can be layered over other dm devices
or actual storage devices

● Dm-flaky - Starting from the time the table is loaded, the device is
available for N seconds, then exhibits unreliable behaviour for N
seconds, and then the cycle repeats

● Dm-delay - A target that delays reads and/or writes and can send
them to different devices

● Dm-dust - Generate read errors and read errors that can be
corrected with a write

15

Network Block Device (NBD)

● Can create block devices from files or in memory
○ Sparse support, so you can create sizes that exceed actual

hardware limits, eg. 8EiB
● Errors can be created for a block device by creating a file in /tmp

○ For /dev/nbd0 -> touch /tmp/error0 (error file is configurable)
● Can create read delays, write delays
● Can set error rates as a percentage or probability

16

SCSI Fault Injector

● Combination of SystemTap for kernel instrumentation and the
external program SCSI fault injector which maintains state and
dictates actions

● Created in the kernel 2.6 time frame, circa 2008
● Seems like maintenance and updates have stalled
● It found a number of different bugs during development
● https://www.kernel.org/doc/ols/2008/ols2008v2-pages-205-214.pdf

17

Use An Actual SCSI Disk Drive

● Read long -> corrupt bytes in buffer -> write long -> regular read = read error
● Mode page settings to discover size of correction span
● Fix by rewriting with regular write
● Can prematurely age drive due to increased error counts
● Can cause auto re-allocates which may fill the grown defect list and possibly

cause drive to fail
● May cause SMART errors which may be a good thing for testing
● What disk drive devs do, they have own functionality to clear drive
● Errors limited to read errors (recoverable and unrecoverable)

18

Warning: Don’t do this on a drive you value

Create The Errors In A Virtual Machine (VM)

● If we are already simulating the hardware, why not simulate possible
error responses too?

● Seems like a great way to ensure correct behavior of guest
operating systems

19

● Can present errors before the OS or even the boot loader gets loaded
○ Ensure your RAID solution actually allows you to boot in a degraded

mode
● Operating system agnostic, you can test any OS that will run in VM

○ Compare/contrast file system implementations, volume managers,
software RAID

● Exercise more layers of the storage stack
○ Note: Limited to hardware emulation, thus not all storage device

drivers can be tested
● No resources consumed from guest OS, does consume host resources

Benefits Of Adding Error Injection In VM

20

Benefits Of Adding Error Injection In VM

● No artificial test code in kernel, test like you would in production
● Anyone that can run the VM environment can use, no special hardware
● Create errors for all the supported device types and attachment options

○ SCSI (Parallel, SAS, FC)
○ ATA (PATA, SATA)
○ NVMe
○ Others ...

21

Continued

● Because we are mimicking hardware we need to make sure that it
adheres to the interface protocol
○ Want to avoid programing to incorrect behavior
○ This happens with real hardware, vendors incorrectly implementing

a protocol, kernel has device specific code to handle this
● VMs accurately reflect the hardware implementation they are trying to

model, even the issues, they have to model hardware bugs too

Risks Of VM Error Injection

22

What could possibly go wrong

● Statistics gathering (blktrace for all)
○ Transfer size
○ Location / hot spots
○ Access patterns

● Capture / Playback
○ Capture sequence, play it back

● Repeatability for error reproduction or analysis

Other Potential Use Cases
Some of These Already Exist

23

● Create shingled magnetic recording (SMR) device
○ Allow developers to create new device mapper or filesystems

to improve usability and performance
● Expand device models to support more features

Future Ideas

24

● https://github.com/tasleson/qemu/tree/block_error_inject
● Adds a QAPI for adding/removing media errors for 1 or more block

devices
● Modifications to SCSI, AHCI, NVMe block devices

○ Ability to identify which logical block is in error for request
○ Returns accurate error data, SCSI sense data with sector in error

Proof Of Concept For QEMU

25

https://github.com/tasleson/qemu/tree/block_error_inject

● QEMU already has the ability to inject some errors
○ blkdebug

■ Utilizes a configuration file
■ Can have logic based on different sequence of events

○ I wasn’t aware of this when I added my functionality
● Plan is to merge the functionality I added with the existing blkdebug

and extend the features

Proof Of Concept For QEMU

26

Continued

An Example Use

● I proposed a logging change to Linux kernel to add a unique
durable ID to storage related messages

● It required forcing the kernel down storage error paths to test
logging changes for correctness

● Having this functionality in QEMU made this process much easier,
especially considering kernel changes made in different storage
subsystems

27

What Else Can We Test With A VM?

28

Questions?

29

Thank You!

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

30

